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When managing the risk of options it is often useful to know how sensitivities will change over time and 

with the price of the underlying. For example, many people know that gamma tends to be highest when 

the underlying price is close to the strike price, when the option is close to being at-the-money. Is 

gamma highest exactly at-the-money, or just close to at-the-money, though? The answer is that gamma 

is highest close to at-the-money. To get this answer we can take the derivative of gamma with respect to 

the underlying price, and find where the derivative is zero. Calculating these derivatives is 

straightforward, but often tedious. It is easy to make mistakes. 

In this paper we find the extremum of gamma, and theta for European options on non-dividend paying 

stocks. If you are more interested in the final results than in the derivation, just skip to the summary at 

the end. 

Preliminaries 
We start with the Black Scholes formula for the price of a European call option on a non-dividend paying 

stock: 

𝑐 = 𝑆Φ(𝑑1) − 𝑋𝑒−𝑟𝑇Φ(𝑑2) 

Equation 1 

Here, S is the price of the underlying security, X is the strike price, r is the risk free rate, and T is the time 

to expiry. Further, we have used Φ is used to indicate the standard normal cumulative distribution 

function (cdf). The variables d1 and d2 are defined as: 

𝑑1 =
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𝑆
𝑋

) + (𝑟 +
𝜎2

2
) 𝑇

𝜎√𝑇
 

𝑑2 =
ln (

𝑆
𝑋) + (𝑟 −

𝜎2

2 ) 𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

Equation 2 

Here σ is the implied volatility of the underlying. The first derivative of the call price with respect to the 

underling is the delta of the option: 
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Δ =
𝑑𝑐

𝑑𝑆
 

Equation 3 

The formula for delta is well known, but we will need to use some of the same tricks later on that we 

need to derive the formula for delta. For this reason, and as a warm up, we first find the explicit formula 

for delta. To solve for delta we start by inserting Equation 1 into Equation 3: 

Δ =
𝑑

𝑑𝑆
[𝑆Φ(𝑑1) − 𝑋𝑒−𝑟𝑇Φ(𝑑2)] 

Δ = 𝑆
𝑑Φ(𝑑1)

𝑑𝑆
+

𝑑𝑆

𝑑𝑆
Φ(𝑑1) − 𝑋𝑒−𝑟𝑇

𝑑Φ(𝑑2)

𝑑𝑆
 

Δ = 𝑆
𝑑Φ(𝑑1)

𝑑𝑆
+ Φ(𝑑1) − 𝑋𝑒−𝑟𝑇

𝑑Φ(𝑑2)

𝑑𝑆
  

Equation 4 

The only tricky part, so far, is that we needed to apply the product rule for derivatives to the first term in 

Equation 1. We have to do this because the term Φ(d1) is a function of S (S appears in the formula for 

d1). In order to proceed further we need to be able to solve for the derivative of Φ(d1) and Φ(d2) with 

respect to S. There is no explicit formula for the standard normal cdf, so this may seem like an 

impossible task. What we need to remember is that, for any random variable, the derivative of the 

cumulative distribution function is the simply the probability density function (pdf) (see Miller 2014). 

Using the chain rule, we have: 

𝑑Φ(𝑑1)

𝑑𝑆
= 𝜙(𝑑1)

𝑑𝑑1

𝑑𝑆
= 𝜙(𝑑1)

1

𝑆𝜎√𝑇
 

Equation 5 

Here 𝜙 is used to denote the standard normal pdf.  For a variable x, the standard normal pdf is: 

𝜙(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2

 

Equation 6 

The standard normal pdf of d1 is then: 

𝜙(𝑑1) =
1

√2𝜋
𝑒−

1
2

𝑑1
2

 

Equation 7 

The formula for the pdf of d2 is similar. Substituting Equation 5 into Equation 4, we have: 

Δ = 𝑆𝜙(𝑑1)
1

𝑆𝜎√𝑇
+ Φ(𝑑1) − 𝑋𝑒−𝑟𝑇𝜙(𝑑2)

1

𝑆𝜎√𝑇
 

Equation 8 

At this point, we will find it useful to express the pdf of d2 in terms of d1, first we have: 



(𝑑2)1 = (𝑑1 − 𝜎√𝑇)
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ln(
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𝑋
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Equation 9 

Substituting into Equation 8, we have: 

Δ = 𝑆𝜙(𝑑1)
1

𝑆𝜎√𝑇
+ Φ(𝑑1) − 𝑆𝜙(𝑑1)

1

𝑆𝜎√𝑇
 

The first and last terms cancel out, leaving us with: 

Δ = Φ(𝑑1) 

Equation 10 

Equation 10 is the final formula for delta. We can go no further. 

Next, we need to find the derivative of delta with respect to S. This is just the second derivative of the 

price with respect to S, which we refer to as gamma: 

Γ =
𝑑2𝑐

𝑑𝑆2
=

𝑑Δ

𝑑𝑆
 

Equation 11 

Substituting our formula for delta, Equation 10, we have: 

Γ =
𝑑Φ(𝑑1)

𝑑𝑆
 

Equation 12 

We found this result earlier in Equation 5. The final formula for gamma is then: 

Γ =
𝜙(𝑑1)

𝑆𝜎√𝑇
 

Equation 13 



Gamma Maximum 
Now we are ready to answer our first question: where is gamma highest. To do this, we first find the 

derivative of gamma with respect to S. This is sometimes referred to as “speed”: 
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1
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1
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[𝑆

𝑑𝜙(𝑑1)

𝑑𝑆
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Equation 14 

To go any further, we first need to find the derivative of the standard normal pdf of d1 with respect to S: 

𝑑𝜙(𝑑1)
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𝑑

𝑑𝑆

1

√2𝜋
𝑒−

1
2

𝑑1
2

 

𝑑𝜙(𝑑1)
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=
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𝑑𝜙(𝑑1)

𝑑𝑆
= −𝑑1𝜙(𝑑1)

𝑑𝑑1

𝑑𝑆
 

𝑑𝜙(𝑑1)

𝑑𝑆
= −𝑑1𝜙(𝑑1)
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Equation 15 

Substituting back into Equation 14, we have: 

𝑑Γ

𝑑𝑆
=

1
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1
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[
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Equation 16 

To find the maximum, we need to find S*, such that this derivative is zero: 

−
Γ

𝑆∗ [
𝑑1

𝜎√𝑇
+ 1] = 0 

𝑑1

𝜎√𝑇
= −1 

𝑑1 = −σ√𝑇 

Equation 17 

This intermediate result will be useful further on. Continuing to solve for S*: 
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2
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2
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Equation 18 

Near expiry, when T is small, the right-hand side of Equation 18 is very close to X. Many practitioners 

remember that near expiry, gamma is highest at-the-money. As Equation 18 makes clear, far from 

expiry, or if r or σ are high, the maximum could be significantly lower than X. Though this derivation 

started with the formula for the price of a call, the result is also true for puts.  

To be certain that this is the maximum and not the minimum, we should show that the derivative of 

Equation 16 is negative. It is not too difficult to show that: 

𝑑2Γ

𝑑𝑆2
=

Γ

𝑆2𝜎2𝑇
[𝑑1

2 + 3𝑑1𝜎√𝑇 + 2𝜎2𝑇 + 1] 

Equation 19 

At S*, substituting in Equation 17, this simplifies to: 

𝑑2Γ

𝑑𝑆2
= −

Γ

𝑆∗2𝜎2𝑇
 

Equation 20 

Equation 20 is always negative, so S* is indeed a maximum.   

 

Theta Maximum 
Theta is the derivative of an options price with respect to time: 

Θ =
𝑑𝑐

𝑑𝑡
 

Equation 21 

First a note on the sign of theta. Theta is meant to show how the price of an option changes over time. 

In Equation 1, however, we have defined the price in terms of time to expiry, T, not time, t. While not 

necessary, working with T rather than t, results in more compact equations. The only problem is that 

time to expiry gets shorter over time. Time to expiry moves in the opposite direction as time. So in 

terms of T, we have:  



Θ = −
𝑑𝑐

𝑑𝑇
 

Equation 22 

Theta tends to be negative for both puts and calls. That is, as time goes by, long option positions tend to 

become less valuable. We often refer to this loss in value as time decay. This is only a rule of thumb, and 

for deep in the money puts, theta can be positive. 

For a European call option on a non-dividend paying stock, the Black Scholes theta is: 

Θ = −
𝜎

2√𝑇
𝑆𝜙(𝑑1) − 𝑟𝑋𝑒−𝑟𝑇Φ(𝑑2) 

Equation 23 

Theta is clearly a function of the underlying price, S, and we would like to know at which price theta is 

the greatest, that is at what underlying price is theta the most negative. To do this, we need to calculate 

the derivative of theta with respect to S, which is often referred to as “charm”: 

charm =
𝑑Θ

𝑑𝑆
 

Equation 24 

We proceed as follows: 

𝑑Θ

𝑑𝑆
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Equation 25 

Using earlier results, Equation 15 and Equation 9, we have: 
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[
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We can rearrange this further: 

𝑑Θ

𝑑𝑆
=
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1
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1

𝑇
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2
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𝑑𝑆
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1
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2
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2
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1
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2
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Equation 26 

To find where theta is maximum, we need to find the value of S, S*, that sets Equation 26 equal to zero. 

The standard normal pdf is always positive, so even though S is in d1, 𝜙(𝑑1) can never be zero. To set 

Equation 26 equal to zero, then, we need to find: 

ln (
𝑆∗

𝑋
) − (𝑟 +

𝜎2

2
) 𝑇 = 0 

Equation 27 

Solving, we have: 

𝑆∗ = 𝑋𝑒
(𝑟+

𝜎2

2
)𝑇

 

Equation 28 

In order to prove that S* is a minimum and not a maximum, we should show that the second derivative 

with respect to S is positive.  It takes some work, but eventually we would find: 

𝑑2Θ

𝑑𝑆2
= −

𝜙(𝑑1)

𝑇3/2

1

2𝜎

1

𝑆

1
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𝑋
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2
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𝑋
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2
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Equation 29 

This looks a bit unwieldy, but if we substitute our condition from Equation 27 into the equation, we 

have: 

𝑑2Θ

𝑑𝑆2
=

𝜙(𝑑1)

𝑇3/2

1

2𝜎

1

𝑆∗
 

Equation 30 

All of these terms must be positive, so the second derivative is positive and S* is indeed a minimum. 

Though we did not prove it here, this result is also true for European puts on non-dividend paying 

stocks. 

  



Summary 
For both gamma and theta, the extremum occur close to at-the-money near expiration. 

The maximum for gamma for both European calls and puts on non-dividend paying stocks occurs at: 

𝑆∗ = 𝑋𝑒
−(𝑟+

3𝜎2

2
)𝑇

 

 

For theta, the minimum, the most negative value, occurs at: 

𝑆∗ = 𝑋𝑒
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